PH2 Mark scheme - January 2011

\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{Question} \& Marking details \& Marks Available

\hline 1 \& (a)

(b) \& \begin{tabular}{l}
(i)

(ii)

(iii)

(i)

(ii)

 \&

0.20 m

I. $\quad 10 \mathrm{~m} \mathrm{~s}^{-1}$ [e.c.f.]

II. $\quad 0.02 \mathrm{~s}$

III. Displaced wave drawn with same amp and wavelength (1) As $1^{\text {st }}$ marking point with displacement 0.05 m to right (1)

Direction of [particle] oscillation [accept particle movement] and direction of travel [or direction of energy propagation] (1) at right angles (1).

Progressive waves transfer energy through medium; stationary waves do not.

For progressive waves the amplitude doesn't change [or falls gradually] (1)

For stationary waves the amplitude increases, decreases and increases

(1) [or drops to zero at equally spaced points / nodes]

 \&

1

1

1

2

2

1

2

[10]
\end{tabular}

\hline 2. \& | (a) |
| :--- |
| (b) |
| (c) | \& | (i) |
| :--- |
| (ii) | \& | Spreads out [or equiv. but not just "bends"] |
| :--- |
| constant phase relationship (1) [between light from slits / sources] |
| re-arrangement of formula at any stage (1) [or by impl.] |
| answer correct except, perhaps, for powers of 10 (1) $1.9 \mathrm{~m}(1)$ |
| Dark fringes caused by destructive interference (1). With one slit closed, light from the other slit not cancelled [or equiv.](1) | \& | 1 |
| :--- |
| 1 |
| 3 |
| 2 |
| [7] |

\hline
\end{tabular}

Question			Marking details	Marks Available
3	(a)	(i) (ii) (i) (ii)	Formula correctly transposed at any stage (1). $n=2(1) ; d=2.2 \mu \mathrm{~m}(1)$ Uncertainty [accept error] in measuring angle makes lower uncertainty [accept error] in d. $\begin{aligned} & 2 \lambda=2.2 \times 10^{-6} \sin 35.1^{\circ} \text { [e.c.f.] (1) [or by impl.] } \\ & \lambda=633 \mathrm{~nm}(1) \end{aligned}$ Either $\frac{d}{\lambda}=3.5[$ or $<4]$ or $\frac{3 \lambda}{d}$ and $\frac{4 \lambda}{d}$ evaluated [in an attempt to find $\sin \theta$]. (1) [e.c.f. on d or $\lambda]$ $3^{\text {rd }}$ order deduced by valid reasoning (1).	3 1 2 2 [8]
4.	(a) (b)	(i) (ii) (iii)	Bit of data arrives spread out over a period of time [accept: data smeared or multimode dispersion] (1). Data bits could overlap on arrival / can't distinguish (1)	2 3 1 2 2 [10]

\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{Question} \& Marking details \& \begin{tabular}{l}
Marks \\
Available
\end{tabular} \\
\hline 5. \& \begin{tabular}{l}
(a) \\
(b) \\
(c) \\
(d)
\end{tabular} \& \begin{tabular}{l}
(i) \\
(ii) \\
(i) \\
(ii)
\end{tabular} \& \begin{tabular}{l}
[minimum] energy needed to eject an electron [from surface]
\[
\begin{aligned}
\& h f_{\min }=\phi[\text { or equiv. or by impl.] } \\
\& f_{\min }=5.710^{14} \mathrm{~Hz}(1) \\
\& \begin{aligned}
\& E_{\mathrm{k} \max }=6.63 \times 10^{-34} \times 7.0 \times 10^{14}-3.8 \times 10^{-19} \quad[\text { or equiv or by impl. }] \\
\& \quad=8.4 \times 10^{-20} \mathrm{~J}(1)
\end{aligned}
\end{aligned}
\] \\
Increasing intensity increases number of photons per second [or "photons cannot co-operate"]. (1) \\
But individual photon energy unchanged [or "frequency unchanged"] \\
(1). \\
No. of emitted electrons per second [accept current]. \\
Increase p.d. from zero (1) until ammeter reads zero (1). \\
Take voltmeter reading, \(V\). (1) Evaluate \(e V\). (1)
\end{tabular} \& \begin{tabular}{l}
1 \\
2 \\
2 \\
2 \\
1 \\
4 \\
[12]
\end{tabular} \\
\hline 6 \& (a)
(b)

(c) \& \begin{tabular}{l}
(i)

(ii)

(iii)

(i)

(ii)

(i)

(ii)

(iii)

 \&

$$
\begin{aligned}
& \lambda=\frac{h c}{E}[\text { any orientation }]\left[\text { or } E=h f \text { and } f=\frac{c}{\lambda}\right](1) \\
& \lambda=6.33 \times 10^{-7} \mathrm{~m}((\text { unit }))(1)
\end{aligned}
$$

Red or orange.

Arrow shown from top energy level to middle level

[Incident or passing] photon (1) of energy $3.14 \times 10^{-19} \mathrm{~J}$ [or equiv. but not just "of the right energy"] (1)

Any 2×1 of:

- coherent \checkmark

- beam nearly parallel

- [almost] monochromatic [or same frequency] \checkmark

- polarised \checkmark

[photons reflected by M_{2} per second $\left.=\right] 6.3 \times 10^{-15}\left[\mathrm{~s}^{-1}\right]$ and [photons transmitted per second $=] 0.7 \times 10^{15}\left[\mathrm{~s}^{-1}\right]$

$$
0.7 \times 10^{15} \mathrm{~s}^{-1} \times 3.14 \times 10^{-19} \mathrm{~J} \text { [or by impl.] }(1)
$$

$$
=0.22 \mathrm{~mW}((\text { unit }))(1)
$$

[1 mark lost if wrong number of photons used]

Stimulated emission event gives 2 photons out for 1 photon in. (1)

Many such events as photons traverse amplifying medium [twice] (1) [or other true and relevant observation]

 \&

2

1

1

2

2

1

2

2

[13]
\end{tabular}

\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{Question} \& Marking details \& Marks Available

\hline 7. \& (a)
(b)
(c)

(d) \& (i) \& \begin{tabular}{l}
LHS: lepton number $[=0+0]=0$ (1)

RHS: lepton number $=[0]-1+1(1)[=0]$

I. $\quad 4 \rightarrow 3$

II. $\quad 2 \rightarrow 3$

weak (1)

because of neutrino involvement [or change in quark flavour] (1)

takes place in the Sun (1)

first stage in fusion chain [or ultimately leads to sunshine] (1)

Alternatively: has taken place in stars (\checkmark) leading to the formation of heavy elements (\checkmark)

electro-magnetic

 \&

1
1

2

2

1

[9]
\end{tabular}

\hline 8 \& (a)

(b)

(c) \& (i)
(ii)
(i)

(ii) \& | $\begin{aligned} \hline \text { Power } & =\text { intensity } \times 4 \pi r^{2}(1) \\ & =3.8[5] \times 10^{26} \mathrm{~W}(1) \end{aligned}$ |
| :--- |
| [1 mark lost for factors of 2,3 or 10^{n} adrift] absorption by atmosphere. $\begin{aligned} A & =\frac{3.85 \times 10^{26}}{5.67 \times 10^{-8} \times 5780^{4}} \mathrm{~m}^{2}[\text { e.c.f. }](1) \\ & =6.1 \times 10^{18} \mathrm{~m}^{2}(1)\left[6.08 \times 10^{18} \mathrm{~m}^{2}\right] \end{aligned}$ | \& 1

2

2

4
[11]

\hline
\end{tabular}

