Question			Marking details	Marks Available
1	<i>(a)</i>	(i)	0.20 m	1
		(ii)	 I. 10 m s⁻¹ [e.c.f.] II. 0.02 s III. Displaced wave drawn with same amp and wavelength (1) 	1
		(iii)	As 1 st marking point with displacement 0.05 m to right (1) Direction of [particle] oscillation [accept <u>particle</u> movement] and direction of travel [or direction of energy propagation] (1) at right	2
			angles (1).	2
	(b)	(i) (ii)	Progressive waves transfer energy through medium; stationary waves do not. For progressive waves the amplitude doesn't change [or falls	1
			gradually] (1) For stationary waves the amplitude increases, decreases and increases (1) [or drops to zero at equally spaced points / nodes]	2
				[10]
2.	<i>(a)</i>	(i)	Spreads out [or equiv. but not just "bends"]	1
		(ii)	constant phase relationship (1) [between light from slits / sources]	1
	(b)		re-arrangement of formula at any stage (1) [or by impl.] answer correct except, perhaps, for powers of 10 (1) 1.9 m (1)	3
	(c)		Dark fringes caused by destructive interference (1). With one slit closed, light from the other slit not cancelled [or equiv.](1)	2
				[7]

PH2 Mark scheme – January 2011

Question			Marking details	Marks Available
3	<i>(a)</i>	(i)	Formula correctly transposed at any stage (1). $n = 2$ (1); $d = 2.2 \ \mu m$ (1)	3
		(ii)	Uncertainty [accept error] in measuring angle makes lower uncertainty [accept error] in <i>d</i> .	1
	(b)	(i)	$2\lambda = 2.2 \times 10^{-6} \sin 35.1^{\circ}$ [e.c.f.] (1) [or by impl.] $\lambda = 633 \text{ nm}$ (1)	2
		(ii)	Either $\frac{d}{\lambda} = 3.5$ [or < 4] or $\frac{3\lambda}{d}$ and $\frac{4\lambda}{d}$ evaluated [in an attempt to	
			find sin θ]. (1) [e.c.f. on <i>d</i> or λ] 3 rd order deduced by valid reasoning (1).	2
				[8]
4.	<i>(a)</i>		$n_{\text{clad}} \sin 90^{\circ} = 1.540 \sin 77^{\circ}$ or $n_{\text{clad}} = 1.540 \sin 77^{\circ}$ [or by impl.] (1) $n_{\text{clad}} = 1.50[1]$ [accept 1.5] (1)	2
	(b)	(i)	speed = $\frac{3.00 \times 10^8}{1.54}$ (1) time = $\frac{\text{distance}}{\text{speed}}$ (1) [transposed at any stage]	
			= 1.027×10^{-5} s (1) [omission of 1.54 loses just 1 mark]	3
		(ii)	I. $AB = \frac{AC}{\sin 77^{\circ}}$ or $AB = \frac{AC}{\cos 13^{\circ}}$ or equiv. (1)	1
			II. Zigzag time = $1.027 \times 10^{-5} \times 1.026$ s (1) [or Extra time = $1.027 \times 10^{-5} \times 0.026$ or by impl.] Extra time = 2.7×10^{-7} s [e.c.f. on speed] (1)	2
		(iii)	Bit of data arrives spread out over a period of time [accept: data smeared or multimode dispersion] (1). Data bits could overlap on arrival / can't distinguish (1)	2
			Data one could overlap on arrivar / can't distinguish (1)	[10]

PMT

Question			Marking details	Marks Available
5. (<i>a</i>)			[minimum] energy needed to eject an electron [from surface]	1
	(b)	(i)	$hf_{\min} = \phi$ [or equiv. or by impl.] (1) $f_{\min} = 5.7 \ 10^{14} \text{ Hz} (1)$	2
		(ii)	$E_{k \max} = 6.63 \times 10^{-34} \times 7.0 \times 10^{14} - 3.8 \times 10^{-19} \text{ [or equiv or by impl.] (1)}$ = 8.4 × 10 ⁻²⁰ J (1)	2
	(c)	(i)	Increasing intensity increases number of photons per second [or "photons cannot co-operate"]. (1) But individual photon energy unchanged [or "frequency unchanged"] (1).	2
		(ii)	No. of emitted electrons per second [accept current].	1
	(<i>d</i>)		Increase p.d. from zero (1) until ammeter reads zero (1). Take voltmeter reading, V . (1) Evaluate eV . (1)	4
				[12]
6	<i>(a)</i>	(i)	$\lambda = \frac{hc}{E}$ [any orientation] [or $E = hf$ and $f = \frac{c}{\lambda}$] (1)	
		<i></i>	$\lambda = 6.33 \times 10^{-7} \text{ m ((unit))(1)}$	2
		(ii) (iii)	Red or orange. Arrow shown from top energy level to middle level	1
	(b)	(i)	[Incident or passing] photon (1) of energy 3.14×10^{-19} J [or equiv. but	1
		(ii)	not just "of the right energy"] (1) Any 2×1 of:	2
			 coherent ✓ beam nearly parallel ✓ [almost] monochromatic [or same frequency] ✓ polarised ✓ 	2
	(c)	(i)	[photons reflected by M ₂ per second =] 6.3×10^{-15} [s ⁻¹] and [photons transmitted per second =] 0.7×10^{15} [s ⁻¹]	1
		(ii)	$0.7 \times 10^{15} \text{ s}^{-1} \times 3.14 \times 10^{-19} \text{ J [or by impl.] (1)}$ = 0.22 mW ((unit))(1) [1 mark lost if wrong number of photons used]	2
		(iii)	Stimulated emission event gives 2 photons out for 1 photon in. (1) Many such events as photons traverse amplifying medium [twice] (1) [or other true and relevant observation]	2
				[13]

		PMT

Question			Marking details	Marks Available	
7.	<i>(a)</i>	(i)	LHS: lepton number $[= 0 + 0] = 0$ (1) RHS: lepton number $= [0] - 1 + 1$ (1) $[= 0]$	2	
		(ii)	I. $4 \rightarrow 3$ II. $2 \rightarrow 3$	1 1	
	(b)		weak (1) because of neutrino involvement [or change in quark flavour] (1)	2	
	(c)		takes place in the Sun (1) first stage in fusion chain [or ultimately leads to sunshine] (1) Alternatively: has taken place in stars (\checkmark) leading to the formation of heavy elements (\checkmark)	2	
	(<i>d</i>)		electro-magnetic	1	
				[9]	
8	(a)	(i)	Power = intensity $\times 4\pi r^2$ (1) = 3.8[5] $\times 10^{26}$ W (1) [1 mark lost for factors of 2, 3 or 10 ⁿ adrift]	2	
		(ii)	absorption by atmosphere.	1	
	(b)	(i)	$A = \frac{3.85 \times 10^{26}}{5.67 \times 10^{-8} \times 5780^4} \text{ m}^2 \text{ [e.c.f.] (1)}$ = 6.1 × 10 ¹⁸ m ² (1) [6.08 × 10 ¹⁸ m ²]	2	
		(ii)	<i>Either</i> $d = 2\sqrt{\frac{A}{4\pi}} \text{ [or equiv.] (1)}$ $= 1.39 \times 10^9 \text{ m (1)}$ Or $A = 4\pi \left[\frac{d}{2}\right]^2 (1)$ $= 6.15 \times 10^{18} \text{ m}^2 (1)$	2	
	(c)		$\lambda_{\rm I max} = \frac{W}{T} = \frac{2.90 \times 10^{-3} \text{ mK}}{5780 \text{ K}} (1)$ = 500 nm [which is in the visible] (1)		
			Sketch graph of correct general shape (1) with peak at 500 nm [e.c.f.] (1)	4	
				[11]	